Virtual Learning

$$
\begin{aligned}
& \text { Physics } \\
& \text { Kepler's Laws } \\
& \text { May 12, } 2020
\end{aligned}
$$

Physics

Kepler's Laws: May 12,2020

Objective/Learning Target:

Students will examine Kepler's Laws and use them solve problems.

Quick Review \#1

Calculate the force of gravity that Earth (mass $6.0 \times 10^{24} \mathrm{~kg}$) and the Moon (mass $7.4 \times 10^{22} \mathrm{~kg}$) exert on each other. The average Earth-Moon distance is 3.8 x $10^{8} \mathrm{~m}$.

Quick Review \#1

$$
\begin{aligned}
F & =G \frac{\mathrm{mM}}{\mathrm{r}^{2}} \\
& =\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right) \times \frac{6.0 \times 10^{24} \mathrm{~kg} \times 7.4 \times 10^{22} \mathrm{~kg}}{\left(3.8 \times 10^{8} \mathrm{~m}\right)^{2}} \\
& =2.1 \times 10^{20} \mathrm{~N}
\end{aligned}
$$

Quick Review \#2

What is the change in the force of gravity between two objects when both of their masses are doubled and the distance between them is also doubled?
attract with a force of

Quick Review \#2 Answer

$$
F=G \frac{\mathrm{mM}}{\mathrm{r}^{2}}
$$

So now double the masses and the distance
$F=G \frac{2 m 2 M}{(2 r)^{2}}=G \frac{4 m M}{4(r)^{2}}=G \frac{m M}{r^{2}}$
attract with a fonce of
So the force remains the same.

Newton's Universal Law of Gravitation

Link:Kepler's Laws

Directions:

- Read through Kepler's Laws.
- Work through any examples on a separate piece of paper before you scroll down to the solution.
- On a separate piece of paper complete the practice problems on the following slides.
- Check your answers.
- For additional practice check out the conceptual questions and the problems and exercises in the table of contents for the online text linked above.

Practice Problem \#1

Satellite A is 5 times farther from a planet than satellite B. If it takes satellite A 22 weeks to complete a full orbit around the planet, how long will it take satellite B to travel around the planet once?

Practice Problem \#1 Answer

$T_{1}^{2} /\left(r_{1}{ }^{3}\right)=\left(T_{2}^{2}\right) /\left(r_{2}^{3}\right)$.
Now substitute the values given $22^{2} / 5^{3}=x^{2} / 1^{3}$

Thus, $x=1.97$ or 2 weeks

Practice Problem \#2

If Saturn is, on average, 9 times farther from the Sun than the Earth is, how long is its year in terms of Earth years?

Practice Problem \#2 Answer

$T_{1}{ }^{2} /\left(r_{1}^{3}\right)=\left(T_{2}{ }^{2}\right) /\left(r_{2}^{3}\right)$.
Now substitute the values given
$1^{2 / 1} 1^{3}=x^{2} / 9^{3}$
so we solve for x and get $x=\sqrt{ }\left(9^{3}\right)=27$

Practice Problem \#3

Satellite A is 7 times farther from a planet than satellite B. If it takes satellite B 4 weeks to complete a full orbit around the planet, how long will it take satellite A to travel around the planet once?

Practice Problem \#3 Answer

$T_{1}^{2} /\left(r_{1}{ }^{3}\right)=\left(T_{2}^{2}\right) /\left(r_{2}^{3}\right)$.
Now substitute the values given
$x^{2} / 7^{3}=4^{2} / 1^{3}$
Thus, $x=74$ weeks

Additional Practice

For additional explanation and more practice problems visit the following site.

Kepler's Laws - Physics Classroom

Kepler's 3 Laws of Planetary Motion

(1)

The orbits are ellipses

(2)

Equal areas in equal time

